LOCAL SYMMETRY FRAMEWORK

A Proposal for the Experimental Detection of Informational Curvature

Author: George Hohbach, Independent Researcher
© 2025 George Hohbach

1. Purpose

This project extends Einstein's principle of general covariance into a quantitative framework that describes not only spacetime geometry but the **self-organization of coherence** in physical and biological systems.

It introduces an additional tensor $I_{\mu\nu}$, informational curvature, which accounts for the way matter, fields, and living structures restore order after perturbation.

The goal is twofold:

- 1. Derive the mathematical consequences of the Local Symmetry principle.
- 2. Provide empirical tests using optical and electrophysiological methods.

2. Conceptual Background

Einstein's field equations

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

relate spacetime curvature $G_{\mu\nu}$ to energy–momentum $T_{\mu\nu}$.

However, systems—especially living ones—show restoration of structure without proportional energy input.

This implies an additional organizing field governing coherence rather than energy.

The **Local Symmetry** postulate:

Every physical region minimizes informational curvature, maintaining invariance of form under local transformations of energy and information.

To represent this mathematically:

$$G_{\mu\nu} + I_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}.$$

3. Mathematical Definition

Let J_{μ} be an informational four-current describing local coherence flow, and $\Phi_{\mu\nu} = \nabla_{\mu}J_{\nu} - \nabla_{\nu}J_{\mu}$ its associated field tensor.

A minimal, gauge-invariant form of the informational curvature tensor is:

$$I_{\mu
u} = lphaig(\Phi_{\mu\lambda}\Phi_{
u}{}^{\lambda} - rac{1}{4}g_{\mu
u}\Phi_{\lambda\sigma}\Phi^{\lambda\sigma}ig) + eta(
abla_{\mu}J_{
u} +
abla_{
u}J_{\mu}),$$

where α , β are coupling constants.

 $I_{\mu\nu}$ is formally analogous to the electromagnetic stress tensor, implying a conserved informational energy:

$$\nabla_{\mu}I^{\mu\nu}=0.$$

4. Predictions

1. Coherence Recovery Rate

Perturbed systems will return to ordered states with a relaxation constant τ_c correlated to curvature-flattening rate | I |.

2. Energy Efficiency of Organization

Regions of lower *I* exhibit higher functional order for the same energy input—observable in biological tissue, resonant plasmas, or photonic networks.

3. Electromagnetic Coupling

When informational and EM fields overlap, interference terms

$$M_{\mu
u} = \lambda (\Phi_{\mu\lambda} F_{
u}{}^{\lambda} + F_{\mu\lambda} \Phi_{
u}{}^{\lambda})$$

predict measurable polarization or coherence anomalies.

5. Empirical Testbeds

DOMAIN	OBSERVABLE	INSTRUMENTATION
Biophoton Emission	Recovery of photon temporal coherence $(g^{(2)}(au))$ following stress	Dark chamber + PMT
Neural Coherence	Phase-locking value (PLV) restoration after stimulus	EEG/MEG arrays
Resonator Arrays	Phase-variance decay constant κ as curvature proxy	Tunable optical/acoustic rings
Structured Water	Non-linear refractive-index response to low EM fields	Laser interferometry

Each test can produce a **Symmetry Restoration Index**:

$$SRI = \frac{d}{dt} \ln \left(\frac{P_{\text{coherent}}}{P_{\text{total}}} \right),$$

a directly measurable scalar analogous to curvature density.

6. Research Plan

Phase 1 (6 months) Derive computational simulations connecting $I_{\mu\nu}$ to observed coherence curves; begin low-budget optical pilot test.

Phase 2 (6–12 months) Joint verification with partner laboratory (photon or EEG domain).

Phase 3 (12–18 months) Publication of empirical SRI v. perturbation data comparing theoretical prediction to observation.

7. Scientific and Societal Impact

- * Provides a unified geometrical law of self-organization linking physics and biology.
- * Introduces measurable parameters for systemic health and coherence.
- * Bridges theoretical physics with regenerative medicine and sustainable-system design.
- * Advances open, interdisciplinary science emphasizing transparency and empirical clarity.

Contact: George Hohbach | hohbach.info@gmx.de |

https://www.georgehohbach.com/

https://www.georgehohbach.com/data_protection_datenschutzerklaerung.htm